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q Interband Cascade Lasers: Overview
q Optical frequency comb
q Mode-locked lasers
q Interband cascade mode-locked lasers
q Injection locked ICL devices 
q Dual frequency comb spectroscopy
q Second harmonic generation in ICL devices



Interband Cascade Laser: Overview
Semiconductor optical sources between 3-4 µm
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Semiconductor emission wavelength 
vs. lattice constant Dominant decay in mid-IR semiconductors
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• Stubborn materials: GaSb growth & fab intrinsically harder
• High loss: Free carrier absorption scales as l2 to l3

• Short upper-state lifetime: Rapid Auger decay of upper lasing level



Interband Cascade Laser: Overview
Quantum Cascade Lasers (QCL)
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• QCL exploits optical transitions 
between electron subbands in a QW  –
No holes, so not a diode

• Very different regime from diodes  –
Upper  lasing level lifetime » 1 ps
rather than » 1 ns

• Tune l with QW width (2.6 - 700 µm!)
• With cascade staircase, 1 electron in 

can yield 30-40 photons out!

ABANDON  THE  DIODE! 
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ICL active medium
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§ High output powers possible
§ Wallplug efficiency > 10%

§ Low power consumption (~ 100 mW)
§ Battery operated & small footprint

§ Broad spectral accessibility
§ l = 2.9-10.0 µm

§ Passive mode-locking allowed!
§ Interband transitions have long gain 

recovery time (~ ns)



Interband Cascade Laser: Overview
ICL progress (DFBs)
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Interband Cascade Laser: Overview
ICL progress (laser on silicon)
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Alexander Spott et al., Optica 5, (2018)



Interband Cascade Laser: Overview
Interband Cascade  VCSELs
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Optical Frequency Comb
What is an optical comb?
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A frequency spectrum that consists of a discrete, regularly spaced series of sharp lines
fm = f0 + mfr



Optical Frequency Comb
Generation: mode-locked laser
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Optical Frequency Comb
Generation: Kerr comb (FWM in optical resonators)
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T. J. Kippenberg et al. Science (2011)



Optical Frequency Comb
Generation: Soliton comb
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T. Kippenberg lab, EPFL



Optical Frequency Comb
Nonlinear optical processes
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OPO-based optical frequency comb

F. Adler et al., Optics Letters 34 (2009)

Difference frequency generated 
optical frequency comb

Widely-tunable mid-infrared frequency comb source
based on difference frequency generation
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We report on a mid-IR frequency comb source of unprecedented tunability covering the entire 3–10 μm molecular
fingerprint region. The system is based on difference frequency generation in a GaSe crystal pumped by a 151 MHz
Yb:fiber frequency comb. The process was seeded with Raman-shifted solitons generated in a highly nonlinear
suspended-core fiber with the same source. Average powers up to 1.5 mW were achieved at the 4.7 μm
wavelength. © 2012 Optical Society of America
OCIS codes: 140.3070, 190.4410, 190.7110, 300.6340.

Frequency combs have enabled new classes of spectro-
meters operating with an unprecedented mix of sensitiv-
ity, acquisition speed, resolution, and accuracy. They are
inherently broadband, can be interfaced to high-finesse
optical cavities to enhance the sensitivity, and are di-
rectly referenced to the SI time standard [1]. A major
obstacle in the development of a versatile comb-based
platform for molecular spectroscopy is the limited tuning
range and/or optical power level of the currently avail-
able mid-IR (MIR) frequency combs.
MIR combs can be realized through nonlinear optical

processes relying either on optical parametric oscillation
(OPO) or difference-frequency generation (DFG). OPOs
have been shown to provide Watt-level frequency combs
in the 2.8 to 4.8 μm range [2]. Commercially available
nonlinear crystals do not match the requirement for OPO-
based systems with a significantly broader tuning range,
although the pending availability of orientation-patterned
GaAs or GaP might change the perspective. Beside the
limited tuning range, another drawback is the require-
ment to lock the OPO cavity to the seeding oscillator,
which in turn requires two phase-locked loops to obtain
phase-stabilization of the MIR output. Self-referencing
can indeed be avoided by adopting a degenerate OPO
scheme [3], but in this case, the spectral range remains
limited to subharmonics of the pump wavelength. On the
other hand, DFG processes allow for much simpler set-
ups. If pump and signal field are phase coherent and
emitted from the same source, the generated idler field
is carrier envelope—offset phase (CEP) slip free (ignor-
ing noncommon path length fluctuations) and requires
only stabilization of the comb spacing [4]. DFG-based
sources driven by fs-Ti:Sapphire lasers were demon-
strated with tuning ranges from 7.5 to 12.5 μm [5].
Er:fiber laser—based systems have so far provided tun-
ability either from 3.2 to 4.8 μm [6] or from 5 to 12 μm [7].
The average power levels demonstrated in these ap-
proaches were around 100 μW at best. Up to 125 mW
from 3 to 4.4 μm has recently been obtained with an
Yb:fiber laser by utilizing tunable Raman solitons as seed
pulses [8]. No approach has nevertheless been shown
to fulfill the requirements for MIR frequency comb
spectroscopy in the entire fingerprinting region, where

molecular compounds exhibit their strongest absorption
features.

In this letter, we demonstrate the use of a low-noise,
Yb:fiber frequency comb to produce mW-level MIR pulse
trains tunable over an unprecedented range from 3 to
10 μm (1000 to 3350 cm−1). The MIR pulses are synthe-
sized by means of a DFG process in a GaSe crystal. A
detailed study of the interaction geometry reveals the op-
timum focusing conditions as a compromise between
various constraints hampered by the large tuning range.

The experimental setup is shown in Fig. 1(a). It is
based on a Yb:fiber frequency comb driven by a Fabry-
Perot—type similariton oscillator operating at 151 MHz
comb spacing [9]. Chirped-pulse amplification in a
cladding-pumped Yb:fiber produced (after compression)
a 2.2 W average power train of <80 fs pulses centered at
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Fig. 1. (Color online) (a) Experimental setup; HWP, half
waveplate; PBS, polarizing beam splitter; SCF, suspended-core
fiber, DM: dichroic mirror, LPF: long-pass filter; (b) Average
power level of the Raman solitons (left scale) as a function
of its center wavelength together with the residual laser output
at 1055 nm (right scale).
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The maximum power measured with a calibrated pyro-
electric detector was 1.5 mW at 4.7 μm, corresponding
to a peak-power spectral density of about 77 μm∕nm
and 0.9 μm∕comb mode, respectively. The power levels
remain in excess of 1 mW in the range from 4 to 5.5 μm,
while decreasing to few hundreds of μW at the ends of
the tuning range.
Numerical simulations have been run to evaluate the

average power limit of the generated MIR radiation.
Some simplifying assumptions were made in the numer-
ical model, so it does not take the strong spatial anisotro-
py of the interaction into account. Nevertheless, the
simulations correctly predict the presence of a maximum
power around 5 μm, but underestimate the power drop at
the wings of the tuning range. On the short wavelength
side (λi ≈ 3 μm), this is likely to be due to the extreme
incidence angles on the crystal (approaching 70 deg)
and the associated phase-front tilting. On the long wave-
length side (λi ≈ 10 μm), a reasonable explanation is the
onset of diffraction not taken into account by the simula-
tions. Experimental power values are, on average, about
a factor of 5 lower than numerical ones. This is, to a large
extent, attributed to the difficulty of keeping the proper
spatial overlap and phase-front matching between pump
and signal beam over the entire tuning range, particularly
due to the small spot size of 18 μm.
Significantly higher conversion efficiencies were pos-

sible by using a 4 mm—long PPLN crystal but with the
drawback of a reduced tuning range. As shown in
Fig. 3(b), average powers between 7 and 55 mW were
achieved over a tuning range from 3 to 4.6 μm, with
the focusing geometry optimized for DFG in GaSe. Exten-
sion of the tuning range up to the absorption edge of

PPLN at 5.5 μm can be obtained with a different crystal
exhibited a wider range of poling periods.

In summary, a MIR DFG source with a tuning range
from 3 to 10 μm at up to 1.5 mW average power using
a GaSe crystal is presented. This constitutes a one order
of magnitude improvement in average power as well as a
significant extension of the tuning range compared to
previously reported sources based on DFG in GaSe.
By using a PPLN crystal, a tuning range from 3 to
4.6 μm at up to 55 mW average power was realized. Since
signal and pump fields are generated in the same oscil-
lator, the generated pulses are, on average, CEP slip free.
Due to the exceptional coherence between the two, we
aim to demonstrate the first comb coherence at wave-
lengths above 5 μm. This will be confirmed with hetero-
dyne beat experiments using a second identical source.
In conjunction with the second MIR source, such a sys-
tem is ideally suited for coherent multiheterodyne spec-
troscopy [12] in the molecular fingerprint region.

This work has received funding from the EC’s Seventh
Framework Program (FP7/2007-2013) under grant agree-
ment 228334 and from the Netherlands Organization for
Scientific Research (NWO). A. Ruehl acknowledges per-
sonal support from a Marie-Curie-fellowship within the
EC’s Seventh Framework Program.
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Fig. 3. (Color online) MIR spectra (left scale) and average
power (right scale) generated by DFG in (a) a GaSe and
(b) a PPLN crystal.
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The maximum power measured with a calibrated pyro-
electric detector was 1.5 mW at 4.7 μm, corresponding
to a peak-power spectral density of about 77 μm∕nm
and 0.9 μm∕comb mode, respectively. The power levels
remain in excess of 1 mW in the range from 4 to 5.5 μm,
while decreasing to few hundreds of μW at the ends of
the tuning range.
Numerical simulations have been run to evaluate the

average power limit of the generated MIR radiation.
Some simplifying assumptions were made in the numer-
ical model, so it does not take the strong spatial anisotro-
py of the interaction into account. Nevertheless, the
simulations correctly predict the presence of a maximum
power around 5 μm, but underestimate the power drop at
the wings of the tuning range. On the short wavelength
side (λi ≈ 3 μm), this is likely to be due to the extreme
incidence angles on the crystal (approaching 70 deg)
and the associated phase-front tilting. On the long wave-
length side (λi ≈ 10 μm), a reasonable explanation is the
onset of diffraction not taken into account by the simula-
tions. Experimental power values are, on average, about
a factor of 5 lower than numerical ones. This is, to a large
extent, attributed to the difficulty of keeping the proper
spatial overlap and phase-front matching between pump
and signal beam over the entire tuning range, particularly
due to the small spot size of 18 μm.
Significantly higher conversion efficiencies were pos-

sible by using a 4 mm—long PPLN crystal but with the
drawback of a reduced tuning range. As shown in
Fig. 3(b), average powers between 7 and 55 mW were
achieved over a tuning range from 3 to 4.6 μm, with
the focusing geometry optimized for DFG in GaSe. Exten-
sion of the tuning range up to the absorption edge of

PPLN at 5.5 μm can be obtained with a different crystal
exhibited a wider range of poling periods.

In summary, a MIR DFG source with a tuning range
from 3 to 10 μm at up to 1.5 mW average power using
a GaSe crystal is presented. This constitutes a one order
of magnitude improvement in average power as well as a
significant extension of the tuning range compared to
previously reported sources based on DFG in GaSe.
By using a PPLN crystal, a tuning range from 3 to
4.6 μm at up to 55 mW average power was realized. Since
signal and pump fields are generated in the same oscil-
lator, the generated pulses are, on average, CEP slip free.
Due to the exceptional coherence between the two, we
aim to demonstrate the first comb coherence at wave-
lengths above 5 μm. This will be confirmed with hetero-
dyne beat experiments using a second identical source.
In conjunction with the second MIR source, such a sys-
tem is ideally suited for coherent multiheterodyne spec-
troscopy [12] in the molecular fingerprint region.
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Fig. 3. (Color online) MIR spectra (left scale) and average
power (right scale) generated by DFG in (a) a GaSe and
(b) a PPLN crystal.
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The Fabry-Perot modes are locked via Kerr nonlinearities! 
A. Hugi et al., Nature, 4 9 2, (2012),
A. Hugi (2013) (Doctoral dissertation)



Optical Frequency Comb
GaSb-Based cascade diode lasers
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Tao Feng, et al., ACS Photonics 2018 5 (12), 4978-4985



Optical Frequency Comb
ICL frequency comb
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Benedikt Schwarz, et al., arXiv:1812.03879 [physics.optics]

https://arxiv.org/abs/1812.03879


Passively Mode-Locked Lasers
Principles of passive mode-locking

• tg << tR
the gain reacts nearly instantaneously to the 
intensity of the pulse; suppresses mode-
locking (cw)
• tg < tR
multiple pulses can propagate in the cavity, 
separated approximately by the gain 
recovery time
• tg > tR
a single laser pulse oscillating in the cavity 
depletes the gain and prevents the formation 
of other pulses 

July 09. 2019 IEEE Summer Topicals 17

time for photon round trip in cavity (tR) 
gain recovery time (tg) 

Gain dynamics for mode-locking



Passively Mode-Locked Lasers
Principles of passive mode-locking

• Gain recovery time:  tg< 1 ps
• vs. tR > 50 ps for a 2 mm long cavity

• Thus passive mode-locking is inherently 
inhibited

• This condition also impedes the formation 
of high-intensity pulses through active 
mode-locking

July 09. 2019 IEEE Summer Topicals 18

Impediment to mode-locking a QCL

8-20 µm wide ridge waveguides by reactive ion etching. A 5 µm-thick layer of Microchem 
SU-8 2005 photoresist was used as an insulation layer between the wafer and the top contact 
to reduce the parasitic capacitance.  The SU-8 2005 photoresist on top of the ridges was 
removed by standard photolithography and a metal layer (Ti/Au; 20 nm/300 nm) was then 
deposited to provide electrical contact. The top Ti/Au contact and the underlying heavily 
doped InP contact layers were etched out in specific areas along the ridges to create multiple 
electrically independent sections with minimal electrical crosstalk. A non-alloyed Ge/Au 
contact was deposited on the back. The samples were indium-soldered on copper holders and 
mounted in a liquid-nitrogen flow cryostat. The short 120 µm to 160 µm-long section was 
aluminum-wire-bonded to a gold microstrip connected to an end launch connector and SMA 
cables for radio frequency (RF) signal injection via a bias tee to modulate the pumping 
current, while the rest of the ridge was bonded to a regular gold bonding pad.  

 
 

Fig. 2.  Diagram of the multi-section QCL, showing the dry-etched laser ridges in white 
(with active region in red), the 5 µm-thick SU-8 insulating layer in grey, and the gold top 
contact in yellow. The top metal contact layer and the underlying heavily doped region 
grown above the top cladding layer are disconnected between the sections. The whole 2.6 
mm-long laser is biased under the same DC voltage, while a RF modulation is added to the 
short section (120-160µm) at the end of the ridge.  

2.2 QCL characteristics       

The current-voltage (I-V) and light-current (L-I) characteristics of a 16µm-wide ridge device 

when the whole ridge is pumped in continuous wave (CW) with no RF modulation at 77K are 
shown in Figure 3.  The CW threshold current is 310 mA, which gives a threshold current 

density of 0.745 kA/cm2. The maximum CW operating temperature of this structure is about 
200 K. The differential resistance of the RF section above threshold is R ≈ 30 Ω. Given the 

estimated capacitance across the insulation layer C ≈ 0.05 pF, the RC-limited frequency 

response extends to ~100 GHz, far above the roundtrip frequency of the laser cavity. The 
actual microwave power delivered to the device measured by a network analyzer was about 

30% of the input power, which indicates a significant impedance mismatch between the 
source and the device. The largest contribution to the impedance mismatch is the inductance 

caused by the bond wire, estimated to be about 1 nH (see Appendix). 

 

#113539 - $15.00 USD Received 30 Jun 2009; revised 7 Jul 2009; accepted 7 Jul 2009; published 13 Jul 2009
(C) 2009 OSA 20 July 2009 / Vol. 17,  No. 15 / OPTICS EXPRESS  12933

Actively-mode-locked QCL

C. Y. Wang et al. “Mode-locked pulses from mid-
infrared Quantum Cascade Lasers”, OPTICS 
EXPRESS 17, 12929 (2009).



Passively Mode-Locked Lasers
Principles of passive mode-locking

• Small saturation energy
• 𝐸! =

ℏ#$
!"
!#

• Saturable absorber length
• Fast saturable absorber recovery

• The SA must recover before to its initial 
state before the pulse makes its round-trip

• The recovery due to spontaneous 
emission is not enough (~ns)

• Create defects
• Reverse bias
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time for photon round trip in cavity (tR) 
gain recovery time (tg) 

Saturable absorber requirements



Passively Mode-Locked ICLs
Carrier Lifetime
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Carrier lifetime measurement using 
optical modulation response technique

!
!"

∆𝑛 = 𝐺# + 𝐺$𝑐𝑜𝑠 𝜔𝑡 − ∆&
'

∆𝑛(t) = 𝐺#𝜏 +
(!'

$)(+')"
𝑐𝑜𝑠 𝜔𝑡 − 𝜙

𝐼-. 𝜔 ∝ (!'
$)(+')"

Cryostat
with sample

Network analyzer

InSb detector



Passively Mode-Locked ICLs
Carrier Lifetime
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cascade structure photoluminescence



Passively Mode-Locked ICLs
Carrier Lifetime: H+ bombardment
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H+ penetration in InSb compounds
@300 keV

H+ penetration profile in IC PL structure



Passively Mode-Locked ICLs
Carrier Lifetime: H+ bombardment
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Passively Mode-Locked ICLs
Carrier Lifetime: H+ bombardment
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H+ penetration depth and concentration
• Intrinsic carrier lifetime 

• ~ 6 ns
• Required ion dose for PL structure 

• ~ 8x1012 ions/cm2

• Required ion dose for full ICL 
• ~ 2x1013 ions/cm2

• Required ion energy for full ICL 
• ~ 300 KeV



Passively Mode-Locked ICLs
Carrier Lifetime: H+ bombardment
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• Threshold increases with IB dose
• 15x increase in threshold from H+

0 → 2x1013
• lifetime variation from 

1 ns → 60 ps
• 6 x 1013/cm2 did not lase

8 x 1013 – 4 x 1014/cm2 desired to 
induce carrier lifetime of 10-50 ps
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LI characteristics of ICLs under different H+ 
dose radiation



ICL combs
ICL comb devices: split contact geometry
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SEM image of an isolation slot

Due to ICLs low lateral resistance, this 
design does not provide enough electrical 
isolation between the two contacts 
(separation <50 µm)



ICL combs
ICL comb devices: split contact geometry
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Gain/SA isolation via carrier diffusion SEM image of double a contact deviceMeasured voltage across ICL for two 
contacts when gain section is biased

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 

 

Vo
lta

ge
 (V

)

Current (mA)

 Gain section
 Saturable absorber



July 09. 2019 IEEE Summer Topicals 28

ICL comb
Implanted split contact ICL fabrication

ICL Wafer
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ICL comb
Implanted split contact ICL fabrication

Alignment marks
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ICL comb
Implanted split contact ICL fabrication

Implantation box via Au
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ICL comb
Implanted split contact ICL fabrication
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ICL comb
Implanted split contact ICL fabrication
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ICL comb
Implanted split contact ICL fabrication
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ICL comb
Implanted split contact ICL fabrication
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ICL comb
Implanted split contact ICL fabrication



ICL combs
Interband Cascade Mode-locked Lasers
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ICL combs
Interband Cascade Mode-locked Lasers
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Extracted optical loss (bottom) and mode 
spacing (top) from a 300µm-400µm device

4 mm long

Extracted optical loss (bottom) and mode 
spacing (top) from a 2mm-long cavity (no SA)
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ICL combs
Interband Cascade Mode-locked Lasers
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Collected LIVs for devices with 300µm (solid 
line) 150 µm contact separation (SA is floating)
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Collected LIVs at 10oC as a function of SA 
section reverse bias-150µm-200µm device 
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ICL combs
Interband Cascade Mode-locked Lasers
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ICL combs
Interband Cascade Mode-locked Lasers
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ICL combs
Interband Cascade Mode-locked Lasers
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ICL combs
ICL FP devices
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ICL FP devices
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ICL combs
Injection locking of ICLs
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RF injection
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a separate ICL biased close to threshold

RF injection
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Optical spectrum of the device under test

RF injection off

~17 dB
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ICL combs
Injection locking of ICLs
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ICL combs
Injection locking of ICLs
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RF

Constant RF power, varied injection frequencya Constant frequency, varied RF powerb
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ICL combs
Injection locking of ICLs
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Evolution of optical spectrum 
subject to RF injection 

Gapless sampling of optical spectrum



Comb Spectrometers
Dual frequency comb spectroscopy
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Ian Coddington, et al, Optica  3,  414-426 (2016)



Comb Spectrometers
Dual frequency comb spectroscopy
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Multipass cell, 
76 m Optical breadboard

24”x 18”
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Comb Spectrometers
Dual frequency comb spectroscopy
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LA Sterczewski et al., Optics Letters 44 (2019)



Comb Spectrometers
Dual frequency comb spectroscopy
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LA Sterczewski et al., Optics Letters 44 (2019)
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Interband Cascade devices
Second harmonic generation
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Interband Cascade devices
Second harmonic generation
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Interband Cascade devices
Second harmonic generation
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Interband Cascade devices
Second harmonic generation
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Conclusion


